Magnetic interactions in molecules and solids / Coen de Graaf, Ria Broer

By: Graaf, Coen de [author]
Contributor(s): Broer, Ria [author] | Ohio Library and Information Network
Material type: TextTextSeries: Theoretical chemistry and computational modelling: Publisher: Cham : Springer, [2015]Copyright date: ©2016Description: 1 online resource (xvi, 246 pages) : illustrations (some color)Content type: text Media type: computer Carrier type: online resourceISBN: 9783319229515; 3319229516; 3319229508; 9783319229508Subject(s): MagnetochemistryGenre/Form: Electronic books Additional physical formats: Printed edition:: No titleDDC classification: 541/.378 LOC classification: QD591Online resources: Click here to access online | Click here to access online | SpringerLink Connect to resource (off-campus)
Contents:
1. Basic Concepts -- 2. One Magnetic Center -- 3. Two (or more) Magnetic Centers -- 4. From Orbital Models to Accurate Predictions -- 5. Towards a Quantitative Understanding -- 6. Magnetism and Conduction
Summary: This textbook is the second volume in the Theoretical Chemistry and Computational Modeling series and aims to explain the theoretical basis of magnetic interactions at a level that will be useful for master students in physical, inorganic and organic chemistry. The book gives a treatment of magnetic interactions in terms of the phenomenological spin Hamiltonians that have been such powerful tools for chemistry and physics in the past half century, starting from the simple Heisenberg and Ising Hamiltonians and ending with Hamiltonians that include biquadratic, cyclic or anisotropic exchange. On the other hand, it also explains how quantum chemical methods, reaching from simple mean field methods to accurate models that include the effects of electron correlation and spin-orbit coupling, can help to understand the magnetic properties. Connecting the two perspectives is an essential aspect of the book, since it leads to a deeper understanding of the relation between physical phenomena and basic properties. It also makes clear that in many cases one can derive magnetic coupling parameters not only from experiment, but also from accurate ab initio calculations. The book starts with introducing a selection of basic concepts and tools. Throughout the book the text is interlarded with exercises, stimulating the students to not only read but also verify the assertions and perform (parts of) the derivations by themselves. In addition, each chapter ends with a number of problems that can be used to check whether the material has been understood
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode
e-Books e-Books Main Library -University of Zimbabwe
Click on Online resources to access the e-Book QD591 (Browse shelf) Available

Includes bibliographical references and index

1. Basic Concepts -- 2. One Magnetic Center -- 3. Two (or more) Magnetic Centers -- 4. From Orbital Models to Accurate Predictions -- 5. Towards a Quantitative Understanding -- 6. Magnetism and Conduction

Available to OhioLINK libraries

This textbook is the second volume in the Theoretical Chemistry and Computational Modeling series and aims to explain the theoretical basis of magnetic interactions at a level that will be useful for master students in physical, inorganic and organic chemistry. The book gives a treatment of magnetic interactions in terms of the phenomenological spin Hamiltonians that have been such powerful tools for chemistry and physics in the past half century, starting from the simple Heisenberg and Ising Hamiltonians and ending with Hamiltonians that include biquadratic, cyclic or anisotropic exchange. On the other hand, it also explains how quantum chemical methods, reaching from simple mean field methods to accurate models that include the effects of electron correlation and spin-orbit coupling, can help to understand the magnetic properties. Connecting the two perspectives is an essential aspect of the book, since it leads to a deeper understanding of the relation between physical phenomena and basic properties. It also makes clear that in many cases one can derive magnetic coupling parameters not only from experiment, but also from accurate ab initio calculations. The book starts with introducing a selection of basic concepts and tools. Throughout the book the text is interlarded with exercises, stimulating the students to not only read but also verify the assertions and perform (parts of) the derivations by themselves. In addition, each chapter ends with a number of problems that can be used to check whether the material has been understood

There are no comments on this title.

to post a comment.